Thrive Capital Portfolio Careers

Thrive Capital
companies
Jobs

Software Engineer - ML Infrastructure

Specter

Specter

Software Engineering, Other Engineering, Data Science
San Francisco, CA, USA
Posted on Nov 25, 2025

Location

San Francisco

Employment Type

Full time

Location Type

On-site

Department

Engineering

Company Background
Specter is creating a software-defined "control plane" for the physical world. We are starting with protecting American businesses by granting them ubiquitous perception over their physical assets.

To do so, we are creating a connected hardware-software ecosystem on top of multi-modal wireless mesh sensing technology. This allows us to drive down the cost and time of deploying sensors by 10x. Our platform will ultimately become the perception engine for a company's physical footprint, enabling real-time perimeter visibility, autonomous operations management, and "digital twinning" of physical processes.

Our co-founders Xerxes and Philip are passionate about empowering our partners in the fast-approaching world of physical AI and robotics. We are a small, fast-growing team who hail from Anduril, Tesla, Uber, and the U.S. Special Forces.

Role + Responsibilities
Specter is hiring an ML infrastructure engineer to build and scale the machine learning systems that power real-time perception and inference across our edge-cloud platform. This role owns the training, deployment, and optimization of computer vision and sensor fusion models that enable autonomous monitoring and decision-making for our customers' physical assets.

Key responsibilities include:

  • Designing and implementing scalable ML training pipelines for computer vision models (object detection, tracking, classification, segmentation).

  • Building efficient model serving infrastructure for real-time inference on edge devices with constrained compute and power budgets.

  • Optimizing models for deployment on embedded hardware (quantization, pruning, TensorRT, ONNX, CoreML).

  • Developing continuous training and evaluation systems to improve model performance from production data feedback loops.

  • Creating data pipelines for ingesting, labeling, versioning, and managing massive multi-modal sensor datasets (video, radar, lidar, thermal).

  • Implementing model monitoring, A/B testing frameworks, and performance analytics for deployed perception systems.

  • Collaborating with perception researchers to transition models from research to production at scale across thousands of edge nodes.

  • Building tools and infrastructure for distributed training, hyperparameter optimization, and experiment tracking.

Preferred Qualifications

  • Strong experience with ML frameworks (PyTorch, TensorFlow) and model optimization tools (TensorRT, ONNX Runtime, OpenVINO).

  • Deep understanding of computer vision architectures and their deployment tradeoffs (YOLO, transformers, CNNs, real-time detection/tracking).

  • Hands-on experience deploying models on edge devices (NVIDIA Jetson, ARM processors, or similar embedded platforms).

  • Expertise building MLOps infrastructure — experiment tracking (Weights & Biases, MLflow), feature stores, model registries, CI/CD for ML.

  • Experience with distributed training frameworks (PyTorch DDP, DeepSpeed, Ray) and GPU cluster management.

  • Strong software engineering skills in Python and systems languages (C++, Rust) for performance-critical inference code.

  • Familiarity with video processing, sensor fusion, or multi-modal perception systems is a plus.

  • Prior experience in robotics, autonomous systems, or real-time ML applications is highly valued.